Hint: The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons provides the necessary centripetal force.
Step 1: Find the radius of the orbit of the electron in the ground state.
Considering the case, when r≤R0=1År≤R0=1Å
Let ε=2+δLet ε=2+δ
F=q1q24πε0Rδ0r2+δF=q1q24πε0Rδ0r2+δ
where, ∧=q1q24πε0=(1.6×10-19)2×9×109where, ∧=q1q24πε0=(1.6×10−19)2×9×109
≃23.04×10-29 N m2 ≃23.04×10−29 N m2
The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons (Coulombian force) provides the necessary centripetal force.
F=mv2r=∧Rδ0r2+δ or v2=∧Rδ0mr1+δF=mv2r=∧Rδ0r2+δ or v2=∧Rδ0mr1+δ
mvr=nħ⇒r=nħ mv=nħ m[m∧Rδ0]1/2r1/2+δ/2 [Applying Bohr's second postulates]mvr=nħ⇒r=nħ mv=nħ m[m∧Rδ0]1/2r1/2+δ/2 [Applying Bohr's second postulates]
Solving this for r, we getSolving this for r, we get
rn=[n2ħ 2m∧Rδ0]11-δ where, rn is radius of nth orbit of electron.rn=[n2ħ 2m∧Rδ0]11−δ where, rn is radius of nth orbit of electron.
For n=1 and substituting the values of constant, we getFor n=1 and substituting the values of constant, we get
r1=[ħ 2m∧Rδ0]11-δ r1=[ħ 2m∧Rδ0]11−δ
r1=[1.052×10-689.1×10-31×2.3×10-28×10+19]12.9 r1=[1.052×10−689.1×10−31×2.3×10−28×10+19]12.9
=8×10-11=8×10−11
=0.08 nm (<0.1 nm)=0.08 nm (<0.1 nm)
This is the radius of orbit of the electron in the ground state of the hydrogen atom.
Step 2: Find the kinetic energy and the potential energy of the electron in the ground state.
vn=nħ mrn=nħ (m∧Rδ0n2ħ 2)11-δ vn=nħ mrn=nħ (m∧Rδ0n2ħ 2)11−δ
For n=1, v1=ħ mr1=1.44×106 m/s [This is the speed of electron in ground state]For n=1, v1=ħ mr1=1.44×106 m/s [This is the speed of electron in ground state]
KE=12mv21=9.43×10-19 J=5.9eV [This is the KE of electron in ground state]
PE till R0=-∧R0 [This is the PE of electron in ground state at r=R0]
PE from R0 to r=+∧Rδ0∫rR0drr2+δ=+∧Rδ0-1-δ[1r1+δ]rR0 [This is the PE of electron in ground state at R0 to r]
=-∧Rδ01+δ[1r1+δ-1R1+δ0]=-∧1+δ[Rδ0r1+δ-1R0]
PE=-∧1+δ[Rδ0r1+δ-1R0+1+δR0]
PE=-∧-0.9[R-1.90r-0.9-1.9R0]
=2.30.9×10-18[(0.8)0.9-1.9]J=-17.3 eV
Total energy is (-17.3 + 5.9)=-11.4 eV
This is the required TE of an electron in the ground state.