The Bohr model for the H-atom relies on the Coulomb's law of electrostatics. Coulomb's law has not directly been verified for very short distances of the order of angstroms. Supposing Coulomb's law between two opposite charge +q1, -q2 is modified to

|F|=q1q2(4πε0)1r2, rR0|F|=q1q2(4πε0)1r2, rR0
=q1q24πε01R20(R0r)ε, rR0=q1q24πε01R20(R0r)ε, rR0

Calculate in such a case, the ground state energy of a H-atom, if εε = 0.1, R0=1Å.R0=1Å.

Hint: The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons provides the necessary centripetal force.
Step 1: Find the radius of the orbit of the electron in the ground state.
Considering the case, when rR0=1ÅrR0=1Å
Let ε=2+δLet ε=2+δ
F=q1q24πε0Rδ0r2+δF=q1q24πε0Rδ0r2+δ
where, =q1q24πε0=(1.6×10-19)2×9×109where, =q1q24πε0=(1.6×1019)2×9×109
                          23.04×10-29 N m2                          23.04×1029 N m2
The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons (Coulombian force) provides the necessary centripetal force.
F=mv2r=Rδ0r2+δ or v2=Rδ0mr1+δF=mv2r=Rδ0r2+δ or v2=Rδ0mr1+δ
mvr=r= mv= m[mRδ0]1/2r1/2+δ/2   [Applying Bohr's second postulates]mvr=nħr=nħ mv=nħ m[mRδ0]1/2r1/2+δ/2   [Applying Bohr's second postulates]
Solving this for r, we getSolving this for r, we get
rn=[n2ħ 2mRδ0]11-δ where, rn is radius of nth orbit of electron.rn=[n2ħ 2mRδ0]11δ where, rn is radius of nth orbit of electron.
For n=1 and substituting the values of constant, we getFor n=1 and substituting the values of constant, we get
r1=[ħ 2mRδ0]11-δ r1=[ħ 2mRδ0]11δ 
r1=[1.052×10-689.1×10-31×2.3×10-28×10+19]12.9 r1=[1.052×10689.1×1031×2.3×1028×10+19]12.9 
=8×10-11=8×1011
=0.08 nm               (<0.1 nm)=0.08 nm               (<0.1 nm)
This is the radius of orbit of the electron in the ground state of the hydrogen atom.
Step 2: Find the kinetic energy and the potential energy of the electron in the ground state.
vn= mrn=nħ (mRδ0n2ħ 2)11-δ vn=nħ mrn=nħ (mRδ0n2ħ 2)11δ 
For n=1, v1=ħ mr1=1.44×106 m/s [This is the speed of electron in ground state]For n=1, v1=ħ mr1=1.44×106 m/s [This is the speed of electron in ground state]
KE=12mv21=9.43×10-19 J=5.9eV [This is the KE of electron in ground state]
PE till R0=-R0 [This is the PE of electron in ground state at r=R0]
PE from R0 to r=+Rδ0rR0drr2+δ=+Rδ0-1-δ[1r1+δ]rR0 [This is the PE of electron in ground state at R0 to r]
=-Rδ01+δ[1r1+δ-1R1+δ0]=-1+δ[Rδ0r1+δ-1R0]
PE=-1+δ[Rδ0r1+δ-1R0+1+δR0]
PE=--0.9[R-1.90r-0.9-1.9R0]
=2.30.9×10-18[(0.8)0.9-1.9]J=-17.3 eV
Total energy is (-17.3 + 5.9)=-11.4 eV
This is the required TE of an electron in the ground state.