A magnetic field B is confined to a region ra and points out of the paper (the z-axis), r=0 being the centre of the circular region. Charged ring (charge=Q) of radius b, b>a and mass m lies in the x-y plane with its centre at the origin. The ring is free to rotate and is at rest. The magnetic field is brought to zero in time t. Find the angular velocity ω of the ring after field vanishes.

Hint: The change in magnetic flux results in the rotation of the ring.
Since the magnetic field is brought to zero in time t, the magnetic flux linked with the ring also reduces from maximum to zero. This, in turn, induces an emf in-ring by the phenomenon of EMI. The induced emf causes the electric field E generation around the ring.
Step 1: The inuced emf=electric field (E)×(2πb) (Because V=E×d)               ...(i)
By Faraday's law of EMI;
The induced emf=rate of change of magnetic flux
         =rate of change of magnetic field × area
         =Bπa2t                                                                                                ...(ii)
From Eqs. (i) and (ii), we have;
               2πbE=emf=Bπa2t
Step 2: Since, the charged ring experienced an electric force=QE
This force tries to rotate the coil, and the torque is given by;
                 Torque=b×Force
                              =QEb=QBπa22 πbtb
                              =QBa22t
Step 3:If L is the change in angular momentum.
L=Torque×t=QBa22
Since, initial angular momentum=0
Now, since,          Torque×t=Change in angular momentum
Final angular momentum=mb2ω=QBa22
ω=QBa22mb2  
On rearranging the terms, we have the required expression of angular speed.