Consider an infinitely long wire carrying a current I(t), with dIdt=λ=constant. Find the current produced in the rectangular loop of wire ABCD if its resistance is R (figure).

                   

Hint: The change in current results in a change in magnetic field through the loop.
Step 1: Let us consider a strip of length l and width dr at a distance r from infinite long current carrying
wire. The magnetic field at strip due to current carrying wire is given by;
Field, B(r)=μ0I2πr out of paper
Step 2: Total flux through the loop is;
 Flux=μ0I2πlx0x drr=μ0Il2πlnxx0                                 ...(i)
Step 3: The emf inuced can be obtained by differentiating the eq. (i) w.r.t. t and then applying Ohm's law;
εR=I
We have, induced current=1Rdt=εR=μ0Il2πλRlnxx0                               dIdt=λ