A conducting wire XY of mass m and negligible resistance slides smoothly on two parallel conducting wires as shown in the figure. The closed circuit has a resistance R due to AC. AB and CD are perfect conductors. There is a magnetic field B=B(t)k^.

            

(i) Write down the equation for the acceleration of the wire XY.

(ii) If B is independent of time, obtain v(t), assuming v(0)=u0

(iii) For (ii), showing that the decrease in kinetic energy of XY equals the heat lost in.

Hint: The change in flux results in the induced emf.
Step 1: Let us assume that the parallel wires are at y=0, i.e., along x-axis and y=l.
At t=0, XY has x=0 i.e., along y-axis.
(i) Let the wire be at x=x(t) at time t.
The magnetic flux linked with the loop is given by;
                                                  ϕ=B.A=BAcos0°=BA
At any instant t,                   Magnetic flux=B(t)(l×x(t))
Total emf in the circuit=emf due to change in field (along XYAC)+the motional emf across XY
ε=-dt=-dB(t)dt×lx(t)=B(t)lv(t)                  [second term due to motional emf]
Electric current in clockwise direction is given by;
                          I=1Rε
The force acting on the conuctor is given by; F=ilBsin90°=ilB
Substituting the values, we have;
                       Force=IB(t)R-dB(t)dtIx(t)-B(t)Iv(t)i^
Applying Newton's second law of motion,
                              md2xdt2=-I2B(t)R×dB(t)dtx(t)-I2B2(t)Rdxdt                      ...(i)
which is the required equation.
(ii) Step 2:  If B is independent of time i.e., B=constant
Or dBdt=0
Substituting the above value in Eq(i), we have;
d2xdt2+I2B2mRdxdt=0
or    dvdt+I2B2mRv=0
Integrating using variable separable form of differential equal, we have;
v=A.exp-I2B2tmR
Applying given conditions,       at t=0, v=u0
                                             v(t)=u0×exp(-I2B2t/mR)
This is the required equation.
(iii) Step 3: Since the power consumption is given by P=I2R
Here,                 I2R=B2I2v2(t)R2×R
                               =B2I2Ru02×exp(-2I2B2tmR)    
Now, energy consumed in time interval dt is given by; energy consumed=Pdt=I2Rdt
Therefore, total energy consumed in time t=0tI2Rdt=B2I2Ru02×0texp(-2I2B2tmR)
=B2I2Ru02×mR2I2B21-exp(-2I2B2tmR)=12muo2-12mvt2
=0t I2Rdt=B2I2Ru02mR2I2B21-e-l2B2t/mr
=m2uo2-m2v2t
=decrease in kinetic energy.
This proves that the decrease in kinetic energy of XY equals the heat lost in R.