A body of mass \(0.5\) kg travels in a straight line with velocity \(v=ax^{3/2}\) where \(a=5~\mathrm{m^{-1/2}s^{-1}}\). The work done by the net force during its displacement from \(x=0\) m to \(x=2\) m is:
1. \(15\) J
2. \(50\) J
3. \(10\) J
4. \(100\) J

(b)
Hint: Using the equation of the velocity, we can find the acceleration.
Step 1: Find the acceleration.

 Given, v=ax3/2m=0.5kg,a=5m1/2s1, work done (W)=?

We know that:

Acceleration

a0=dvdt=vdvdx=ax3/2ddx(ax3/2)=ax3/2×a×32×x1/2=32a2x2

Step 2: Find the force.

Now,    Force =ma0=m32a2x2

Step 2: Find the work done.

 Work done =x=0x=2Fdx=023ma2x2dx2=32ma2×(x3/3)02=12ma2×8=12×(0.5)×(25)×8=50J