If \(\left| \vec{A}\right|\) = \(2\) and \(\left| \vec{B}\right|\) = \(4,\) then match the relations in column-I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in column-II.
| Column-I | Column-II |
| (A) \(\left| \vec{A}\times \vec{B}\right|\) \(=0\) | (p) \(\theta=30^\circ\) |
| (B)\(\left| \vec{A}\times \vec{B}\right|\)\(=8\) | (q) \(\theta=45^\circ\) |
| (C) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\) | (r) \(\theta=90^\circ\) |
| (D) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\sqrt2\) | (s) \(\theta=0^\circ\) |
| 1. | A(s), B(r), C(q), D(p) |
| 2. | A(s), B(p), C(r), D(q) |
| 3. | A(s), B(p), C(q), D(r) |
| 4. | A(s), B(r), C(p), D(q) |
Given |A| = 2 and |B| = 4
© 2025 GoodEd Technologies Pvt. Ltd.