If \(|\vec{A}|=2\) and \(|\vec{B}|=4\), then match the relations in column-I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in column-II.

Column-I Column-II
(a) \(\vec{A}.\vec{B}=0\) (i) \(\theta=0^{\circ}\)
(b) \(\vec{A}.\vec{B}=8\) (ii) \(\theta=90^{\circ}\)
(c) \(\vec{A}.\vec{B}=4\) (iii) \(\theta=180^{\circ}\)
(d) \(\vec{A}.\vec{B}=-8\) (iv) \(\theta=60^{\circ}\)

Choose the correct answer from the options given below:

1. (a)–(iii), (b)-(ii), (c)-(i), (d)-(iv)
2. (a)–(ii), (b)-(i), (c)-(iv), (d)-(iii)
3. (a)–(ii), (b)-(iv), (c)-(iii), (d)-(i)
4. (a)–(iii), (b)-(i), (c)-(ii), (d)-(iv)

 

Given |A| = 2 and |B| = 4

(a)

AB=ABcosθ=02×4cosθ=0cosθ=0=cos90θ=90 Option (a) matches with option (ii). 

(b)

AB=ABcosθ=8cosθ=1=cos2×4cosθ=8 Option (b) matches with option (i). 

(c)

AB=ABcosθ=42×4cosθ=4cosθ=12=cos60θ=60 Option (c) matches with option (iv). 

(d)

AB=ABcos θ=82×4cos θ=8cos θ=1=cos 180 θ = 180°
 Option d matches with option iii.